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A Ring Version of Mazur’s Conjecture on Topology
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Alexandra Shlapentokh

1 Introduction

The purpose of this paper is to explore a conjecture due to Barry Mazur and formulated

for Q, in a different setting. This conjecture, that is a part of a series of conjectures made

by Mazur concerning topology of rational points, first appeared in [8], and consequently

in [9, 10, 11]. It states the following.

Conjecture 1.1. Let V be any variety over Q. Then the topological closure of V(Q) in V(R)

possesses at most a finite number of connected components. (See [11, Conjecture 2, page

256].) �

Remark 1.2. Let W be an algebraic set defined over a number field. Then W = V1∪· · ·∪Vk,

k ∈ N, where Vi is a variety and W̄ = V̄1 ∪ · · · ∪ V̄k, with W̄, V̄1, . . . , V̄k denoting the topo-

logical closure of W, V1, . . . , Vk, respectively. Further, if nW , n1, . . . , nk are the numbers

of connected components of W̄, V̄1, . . . , V̄k, respectively and ni < ∞ for all i = 1, . . . , k,

then nW ≤ n1 + · · ·+nk. Thus, without changing the scope of the conjecture we can apply

Conjecture 1.1 to algebraic sets instead of varieties.

This conjecture has an important implication.

Conjecture 1.3. There is no Diophantine definition of Z over Q. �

This implication has a great significance with respect to efforts to solve the ana-

logue of Hilbert’s tenth problem over Q. The original Hilbert’s tenth problem can be
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stated as follows: given an arbitrary polynomial equation in several variables over Z,

is there a uniform algorithm to determine whether such an equation has solutions in

Z? This question, known otherwise as Hilbert’s tenth problem, has been answered neg-

atively in the work of Davis, H. Putnam, Robinson, and Matijasevič (see [2, 3]). Since the

time when this result was obtained, similar questions have been raised for other fields

and rings. In other words, let R be a recursive ring. Then, given an arbitrary polynomial

equation in several variables over R, is there a uniform algorithm to determine whether

such an equation has solutions in R?

Arguably the two most interesting and difficult problems in the area concern R =

Q and R equal to the ring of algebraic integers of an arbitrary number field.

One way to resolve the question of Diophantine decidability negatively over a

ring of characteristic 0 is to construct a Diophantine definition of Z over such a ring.

This notion is defined below.

Definition 1.4. Let R be a ring and let A ⊂ Rk, k ∈ N. Then A has a Diophantine definition

over R if there exists a polynomial f(t1, . . . , tk, x1, . . . , xn) ∈ R[t1, . . . , tk, , x1, . . . , xn] such

that for any (t1, . . . , tk) ∈ Rk,

∃x1, . . . , xn ∈ R, f
(
t1, . . . , tk, x1, . . . , xn

)
= 0 ⇐⇒ (

t1, . . . , tk

) ∈ A. (1.1)

In this case A is called a Diophantine subset of Rk. If the quotient field of R is not alge-

braically closed, we can allow a Diophantine definition to consist of several polynomials

without changing the nature of the relation. (See [3] for more details.)

The usefulness of Diophantine definitions stems from the following easy lemma.

Lemma 1.5. Let R1 ⊂ R2 be two recursive rings such that the quotient field of R2 is not

algebraically closed. Assume that Hilbert’s tenth problem (abbreviated as “HTP” in what

follows) is undecidable over R1, and R1 has a Diophantine definition over R2. Then HTP is

undecidable over R2. �

Diophantine definitions have been obtained for Z over the rings of algebraic in-

tegers of some number fields. Denef has constructed a Diophantine definition of Z for

the finite-degree totally real extensions of Q. Denef and Lipshitz extended Denef’s re-

sults to the totally complex extensions of degree 2 of the finite-degree totally real fields.

Pheidas and the author of this paper have independently constructed Diophantine defi-

nitions of Z for number fields with exactly one pair of nonreal conjugate embeddings. Fi-

nally, Shapiro and the author of this paper showed that the subfields of all the fields men-

tioned above “inherited” the Diophantine definitions of Z. (These subfields include all the
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abelian extensions.) The problem is still open for a general number field. The proofs of

the results listed above can be found in [4, 5, 6, 12, 14, 15].

A similar approach can, in theory, be applied to Q. In other words, one could show

that HTP is undecidable over Q by showing that Z has a Diophantine definition over Q.

However, if Conjecture 1.1 is true, this way of solving the analogue of HTP for Q is not go-

ing to work. Further, as has been demonstrated in [1], the truth of Conjecture 1.1 would

have even more drastic consequences for proving the undecidability of the analogue of

HTP over Q. More precisely, Cornelissen and Zahidi have shown that Conjecture 1.1 im-

plies the absence even of a Diophantine model of Z in Q. The ring version of the notion of

Diophantine model is presented below.

Definition 1.6. Let R1 and R2 be countable recursive rings. Then R2 has a Diophantine

model of R1 if for some k ∈ N there exists a computable injection φ : R1 → Rk
2 such that

for every Diophantine subset D ⊆ R1, φ(D) is a Diophantine subset of Rk
2 .

It is clear that Diophantine definitions provide examples of Diophantine models.

In other words, if R1 ⊂ R2, both rings are computable and R1 has a Diophantine definition

over R2, then R2 has a Diophantine model of R1 with φ being the identity mapping. Fur-

ther, it is equally clear that if R1 has undecidable Diophantine sets and R2 has a Diophan-

tine model of R1, then R2 also has undecidable Diophantine sets. Thus if a computable

ring R has a Diophantine model of Z, some of its Diophantine sets are not computable

and the analogue of HTP has no solution over it. Unfortunately, if Conjecture 1.1 is true,

the result of Cornelissen and Zahidi discussed above shows that we cannot use a con-

struction of a Diophantine model to prove that HTP is undecidable over Q. On the other

hand, Pheidas [13] has recently proposed an approach which, if successful, will yield a

Diophantine model of Z over Q and will therefore falsify Conjecture 1.1.

Given the difficulty of establishing whether Conjectures 1.1 and 1.3 are true over

Q (and number fields in general), one might adopt a gradual approach: consider the con-

jectures over the rings of W-integers of Q and number fields in general. These rings are

defined as follows.

Definition 1.7. Let M be a number field and let W be a set of its primes. Then a ring

OM,W =
{
x ∈ M | ordp x ≥ 0 ∀p 	∈ W

}
(1.2)

is called a ring of W-integers. (The term W-integers usually presupposes that W is finite,

but we will use this term for infinite W also.) If W = ∅, then OM,W = OM—the ring of

algebraic integers of M. If W contains all the primes of M, then OM,W = M.
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We have made some progress over such rings with respect to Diophantine defini-

tions of Z. In particular, we have shown the following theorem.

Theorem 1.8. Let K 	= Q be a totally real number field or a totally complex extension of

degree 2 of a totally real number field. Then for any ε > 0, there exists a set W of primes of

K whose Dirichlet density is bigger than 1−[K : Q]−1−ε and such that Z has a Diophantine

definition over OK,W . (Thus, HTP is undecidable over OK,W .) �

The proof of this theorem can be found in [16, 17, 19].

We can try to apply the same approach to Conjecture 1.1. First we will need to

restate this conjecture for the rings in question.

2 A ring version of Mazur’s conjecture

Notations 2.1. (i) For a number field K, let P(K) denote the set of all finite primes of K.

(ii) Let V ⊂ Cn be an algebraic set defined over a field K. Let A ⊆ K. Then let

V(A) = {x̄ = (x1, . . . , xn) ∈ V ∩ An}.

Question 2.2. Let K be a number field and let WK be a set of primes of K. Let V be any

affine algebraic set defined over K. Let V(OK,WK
) be the topological closure of V(OK,WK

)

in R if K ⊂ R or in C, otherwise. Then how many connected components does V(OK,WK
)

have?

First of all, we can make the following simple observations.

Proposition 2.3. Let T1 and T2 be topological spaces. Consider T = T1×T2 under the prod-

uct topology. Let π : T → T1 be a projection. Let S ⊂ T be such that the topological closure

π(S) of π(S), has infinitely many components. Then the topological closure S̄ of S has in-

finitely many components. �

Proof. First of all, observe that π(S̄) ⊆ π(S), since a projection maps limit points to limit

points. Thus, S̄ ⊆ π−1(π(S)). Therefore, if π(S) =
⋃

i∈I Ci, where I is infinite, Ci are

closed, pairwise disjoint, and infinitely many Ci contain points of π(S), then S̄ =
⋃

i∈I(S̄∩
π−1(Ci)), that is S̄, is a union of infinitely many nonempty pairwise disjoint closed sets.

�

Corollary 2.4. Suppose that for some ring R contained in a number field and for some

affine variety V defined over the fraction field of R, V(R) has infinitely many connected

components and R has a Diophantine definition over a ring R̃ ⊃ R, where the fraction

field of R̃ is a number field K. Then for some affine algebraic set W defined over K, W(R̃)

has infinitely many connected components. �
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Ring Version of Mazur’s Conjecture 415

Proof. Let V be a variety as described in the statement of the proposition with infin-

itely many components of V(R). Let g(t, ȳ) be a Diophantine definition of R over R̃. Let

{fi(x̄), x̄ = (x1, . . . , xn), i = 1, . . . , m} be polynomials defining V. Then consider the follow-

ing system:

g
(
xi, ȳi

)
= 0, i = 1, . . . , n,

fj

(
x̄
)

= 0, j = 1, . . . , m.
(2.1)

Let W be the algebraic set defined by this system. Note that projection of W(R̃)

on x̄-coordinates is precisely V(R) and therefore the topological closure of W(R̃) in R or C

will have infinitely many connected components. �

Before we state the next corollary,we need the following proposition whose proof

can be found in [18].

Proposition 2.5. Let K be a number field. Let P = {p1, . . . , pk} be a finite set of non-

archimedean primes of K. Then the set of elements of K integral at elements of P has

a Diophantine definition over K.

More generally, let W be any set of primes of K and let S ⊂ W, where S is finite.

Then OK,W\S has a Diophantine definition over OK,W . �

Corollary 2.6. Let W and S be sets of finite primes of Q, where S = P(Q) \ W is finite.

Suppose that Conjecture 1.1 holds over Q. Let V be any variety defined over Q. Then the

real topological closure of V(OQ,W) has finitely many connected components. �

Proof. By Proposition 2.5, OQ,W has a Diophantine definition over Q. Therefore, we can

apply Corollary 2.4 to reach the desired conclusion. �

Proposition 2.7. Let R be a subring of a number field K such that for any variety V defined

over K, the topological closure of V(R) has finitely many connected components. Then no

infinite discrete (in archimedean topology) subset of R has a Diophantine definition over

R. In particular, no infinite subset of Zn, where n is a positive integer, has a Diophantine

definition over R. �

Corollary 2.8. Let S be defined as in Corollary 2.6. Then there exists an affine variety U

such that the real closure of U(OQ,S) will have infinitely many components. �

Proof. By Proposition 2.5, Z has a Diophantine definition over OQ,S. Therefore, we can

apply Proposition 2.7 to reach the desired conclusion. �

Thus if we allow finitely many primes in denominator, in the closure, we will have

varieties over the resulting ring with infinitely many connected components. Similarly, if
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Conjecture 1.1 is true and we remove a finite number of primes from the denominator,

all the varieties over the resulting rings will have finitely many components only, in the

closure. The natural question is then how many primes we can remove from the denomi-

nator before we see varieties with infinitely many components in the topological closure

over the resulting rings. In this paper, we show that in case of totally real fields (includ-

ing Q), and their totally complex extensions of degree 2, we can remove sets of arbitrarily

small positive density and get varieties with infinitely many connected components over

the resulting rings. We have weaker results for complex fields with one pair of nonreal

conjugate embeddings.

As has been mentioned above, Conjecture 1.1 implies that Z has no Diophantine

definition over Q. Also, as described in the introduction, we have been successful in con-

structing Diophantine definitions of Z over rings OK,W , where K is a nontrivial totally

real extension of Q or a totally complex extension of degree 2 of a totally real field and

W is of density arbitrarily close to 1 − 1/[K : Q]. We do not have such a Diophantine def-

inition over Q and over number fields with one pair of nonreal conjugate embeddings.

However, by looking at a stronger conjecture, we are able to construct “counterexamples”

over these fields also.

3 Equations with infinite discrete solution sets

Lemma 3.1. Let K be a number field. Let WK ⊂ P(K) be such that for some finite extension

M of K all the primes of WK remain prime in the extension M/K. Let WM be the set of all

the M-primes above the primes of WK. Then all the solutions x ∈ OM,WM
to the equation

NM/K(x) = 1 (3.1)

are integral units. �

Proof. Let p be a prime occurring in the numerator of the divisor of x in M. Then, since

the divisor of the norm is trivial, a K-conjugate of p must appear in the denominator of the

divisor. Thus p must lie above a prime of K splitting in the extension M/K. On the other

hand, since x ∈ OM,WM
, the only primes of M which can appear in the denominator of

x are primes of WM. But primes of WM lie above primes of WK which do not split in the

extension M/K. Thus, the divisor of x has no primes in the numerator. A similar argument

shows that the divisor of x has no primes in the denominator. Hence, x is an integral unit.
�

Lemma 3.2. Let M be any finite extension of Q of degree n > 2. Let WQ ⊂ P(Q) be a set of

Q-primes not splitting in the extension M/Q. Let {ω1, . . . , ωn} ⊂ OM be an integral basis
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of M over Q. Let {ωi,j, j = 1, . . . , n}, ωi,1 = ωi, be all the conjugates of ωi over Q. Then all

the solutions (a1, . . . , an) ∈ OQ,WQ
to

n∏
j=1

n∑
i=1

aiωi,j = 1 (3.2)

are actually in Z. Furthermore, the set of these solutions is infinite. �

Proof. Let WM contain all the M-primes lying above primes of WQ. Then x=
∑n

i=1 aiωi ∈
OM,WM

. Further, the set {xj =
∑n

i=0 aiωi,j, j = 1, . . . , n} contains all the conjugates of

x = x1 over Q. Thus, (3.2) is equivalent to (3.1), with K = Q. Therefore, if x =
∑n

i=1 aiωi is

a solution to (3.2), then x is an integral unit of M. Since {ω1, . . . , ωn} is an integral basis,

we must conclude that ai ∈ Z. Conversely, if x =
∑n

i=0 aiωi is a square of any integral

unit of M, then (a1, . . . , an) are solutions to this equation. Since we assumed the degree

of the extension to be greater than 2, we can conclude that by Dirichlet unit theorem (see

[7, Theorem 11.19, page 61]), the unit group of M is of rank at least 1, and the solution set

of (3.2) is infinite in Zn. �

Proposition 3.3. For any ε > 0, there exists a set of rational primes WQ such that

Dirichlet density of WQ is greater than 1 − ε and there exists a variety V defined over

Q such that the topological closure of V(OQ,WQ
) in R has infinitely many connected com-

ponents. �

Proof. It is enough to take M to be a cyclic extension of prime degree greater than ε−1.

Then by Chebotarev density theorem (see [7, Theorem 10.4, page 182]), the set of primes

splitting in the extension M/Q has density less than ε and we can apply Lemma 3.2 and

Proposition 2.7. �

To prove our results concerning totally real number fields and their totally com-

plex extensions of degree 2, we need the following results from [19].

Proposition 3.4. Let L be any totally real field. Let M be the Galois closure of L over Q.

Let K be a cyclic extension of Q of prime degree p not dividing [M : Q]. Let WK
L be a set

of primes of L remaining prime in the extension KL/L. Then there exists a set of L-primes

W̄K
L such that the set (WK

L \ W̄K
L ) ∪ (W̄K

L \ WK
L ) is finite and OL,W̄K

L
∩ Q has a Diophantine

definition over OL,W̄K
L

. �

Proposition 3.5. Let L be a totally real field and let d ∈ L be such that d and all of its

conjugates over Q are negative. Let K, F1, . . . , F[L(
√

d):Q] be totally real cyclic extensions of

Q of distinct odd prime degrees not dividing [L : Q]. Let WL(
√

d) be a set of primes of L(
√

d)
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not splitting in the extensions FuL(
√

d)/L(
√

d), u = 1, . . . , [L(
√

d) : Q] and KL(
√

d)/L(
√

d).

Assume also that p = [KL : L] = [KL(
√

d) : L(
√

d)] does not divide the degree of the Galois

closure of L over Q. Then there exists a set of L(
√

d)-primes W̄L(
√

d) such that (WL(
√

d) \

W̄L(
√

d)) ∪ (W̄L(
√

d) \ WL(
√

d)) is finite and OL(
√

d),W̄L(
√

d)
∩ Q has a Diophantine definition

over OL(
√

d),W̄L(
√

d)
. �

Theorem 3.6. Let L be a totally real field or a totally complex extension of degree 2 of a

totally real field. Then for any ε > 0 there exists a set of primes WL ⊂ P(L) such that

Dirichlet density of WL is greater than 1 − ε and there exists an affine algebraic set V

defined over L such that V(OL,WL
) has infinitely many connected components. �

Proof. Since we have dealt with the case of L = Q already, we can assume that L is a

nontrivial extension of Q. We consider the case of totally real fields first. Let L, K, WK
L , p

be as described in Proposition 3.4 with the additional assumption that p > ε−1 and WK
L

contains all the primes of L not splitting in the extension KL/L. Observe that under this

assumption the density of the set of all L primes not splitting in the extension KL/L is

greater than 1−ε. Removing and/or adding finitely many primes to WK
L to form W̄K

L , as in

Proposition 3.4, will not change the density. Let WK
Q be the set of all the rational primes

below the primes of WK
L such that for every q ∈ WK

Q , WK
L contains all the factors of q in

L, and note that due to our assumption on p, primes of WK
Q do not split in the extension

K/Q. Note also that OL,WK
L
∩ Q = OQ,WK

Q
. Let W̄K

Q be the set of all the rational primes

below the primes of W̄K
L such that for every q ∈ W̄K

Q , W̄K
L contains all the factors of q in L.

Again we observe that Q ∩ OL,W̄K
L

= OQ,W̄K
Q

. Finally let W̃K
Q = W̄K

Q ∩ WK
Q . By construction,

W̃K
Q can differ from W̄K

Q by finitely many primes only. Now note that by Propositions 3.4

and 2.5, O
Q,W̃K

Q
has a Diophantine definition over OL,W̄K

L
. Indeed, Proposition 3.4 tells

us that OQ,W̄K
Q

has a Diophantine definition over OL,W̄K
L

and Proposition 2.5 provides a

Diophantine definition of OQ,W̃K
Q

over OQ,W̄K
Q

. On the other hand, by Lemma 3.2, there

exists an infinite set of rational integers Diophantine over OQ,W̃K
Q

and thus over OL,W̄K
L

.

Now let WL = W̄K
L and the first part of the theorem follows from Proposition 2.7.

The case of L being a totally complex extension of degree 2 of a totally real field is

handled in a similar manner using Proposition 3.5. The only observation that is needed

here is that we should select K and F1, . . . , F[L(
√

d):Q] so that [K : Q]−1 +
∑

u[Fu : Q]−1 < ε.

�

We now turn our attention to extensions with one pair of nonreal conjugate em-

beddings. There we do not have results analogous to Propositions 3.4 and 3.5, but we do

know that rational integers have a Diophantine definition over the rings of integers of

these fields. (See [12, 15].) We will use an approach utilized in the above cited result to

prove the following theorem.
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Theorem 3.7. Let K be a nonreal number field with exactly one pair of nonreal conjugate

embeddings. Then there exists a set WK ⊂ P(K) such that the Dirichlet density of WK is

1/2 and for some affine variety V defined over K, V(OK,WK
) has infinitely many connected

components. �

Proof. Let a ∈ OK be such that all the real conjugates of a are less than 1. (Such an a

exists by the strong approximation theorem.) Let M = K(
√

a2 − 1) be a totally complex

extension of degree 2 of K. Note that the density of the set of K-primes not splitting in

the extension M/K is exactly 1/2 by Chebotarev density theorem. So let WK ⊂ P(K) be the

set of primes not splitting in the extension M/K. Let WM be the set of M-primes above

the primes of WK and observe that by Lemma 3.1 all the solutions to the norm equation

NM/K(z) = 1 in OM,WM
are algebraic integers. However in this case we can say a little

bit more. A calculation of the ranks of the integral unit groups of M and K leads us to

conclude that solutions to this norm equation form a multiplicative group of rank 1. If

we select a to be such that |a| > 2[K:Q], while all the real conjugates of a are less than

one-half in absolute value, then all the solutions to the norm equation modulo roots of

unity will be powers of µ = a−
√

a2 − 1. (See the references cited above for more details.)

Note that either µ or µ−1 is of absolute value greater than 1. Otherwise µ will be a root

of unity. Indeed, if σ : K → R is a real embedding of K and σ(x)2 − (σ(a)2 − 1)σ(y)2 = 1

for some x, y ∈ K, then σ(x) −
√

σ(a)2 − 1σ(y) is of absolute value equal to 1, given our

assumption that |σ(a)| < 1. Further, if |µ| = |a −
√

a2 − 1| = |µ−1| = |a +
√

a2 − 1| = 1, then

|µ̄| = |ā ±√
ā2 − 1| = 1, and therefore, indeed µ is an absolute unit—a root of unity.

Assume, without loss of generality, that |µ| > 1 and let µrk = xk −
√

a2 − 1yk for

some sufficiently large r such that |µrk| > 2k. Then |xk| = |(µrk + µ−rk)/2| > (2k − 1)/2.

Therefore, for any l ∈ N, any neighborhood U of xl, there exist only finitely many m ∈ N

such that xm ∈ U. In other words, the set

{
x ∈ OK,WK

|∃x0, y0, y ∈ OK,WK
,

x −
√

a2 − 1y =
(
x0 −

√
a2 − 1y0

)r
, x2

0 −
(
a2 − 1

)
y2

0 = 1
} (3.3)

is discrete and the assertion of the theorem follows from Proposition 2.7. �

4 Some questions

We would like to finish the paper with some obvious questions arising from the discus-

sion above.

Question 4.1. Is there a set WQ of rational primes of Dirichlet density equal to one such

that for some affine variety V defined over Q, V(OQ,WQ
) has infinitely many connected
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components? Note that the answer to this question is not necessarily going to be the res-

olution of the status of Conjecture 1.1, if P(Q) \ WQ is infinite.

Question 4.2. Let K be an arbitrary number field, let OK be the ring of its integers. Then

is there an affine variety V defined over K, such that V(OK) has infinitely many connected

components? (In particular, we are interested in number fields which are not totally com-

plex extensions of degree 2 of totally real fields and have at least two pairs of nonreal

embeddings into C.)

Here we should note the following. If Z is to have a Diophantine definition over

a ring of integers of an arbitrary number field, then the answer would have to be “yes.”

Thus, if the answer to this question is “no” for some number fields, then the situation

with the respect to resolving HTP over the rings of algebraic integers of number fields is

just as serious as it is over Q. Indeed, we can modify slightly the argument of Cornelissen

and Zahidi [1] to show the following.

Proposition 4.3. Let K be a number field and assume that for any affine variety V defined

over K, V(OK) has finitely many connected components. Then OK does not have a Dio-

phantine model of Z. (Since discussion of a Diophantine model entails a discussion of a

computable map from Z to (OK)k, k ∈ N, one must specify a computable presentation of

OK. This is done below.) �

Proof. We start with specifying a computable presentation of K. Let α be an integral gen-

erator of K over Q. Let f(T) be its monic irreducible polynomial over Q. If α is real, then

let a1 < b1 ∈ Q be such that α ∈ (a1, b1) and [a, b] contains no other real root of f. If α is

not real, let a1 < b1, a2 < b2 ∈ Q be such that α ∈ {z ∈ C | �z ∈ (a1, b1), �z ∈ (a2, b2)}

and {z ∈ C | �z ∈ [a1, b1], �z ∈ [a2, b2]} contains no other root of f. We represent every

element of K as a linear combination of the elements of the power basis of α with rational

coefficients. It is not hard to see that under this presentation, K and OK are recursive as

sets and all the field operations are represented by total computable functions. Further,

from these data one can compute effectively the decimal expansion of α if it is real, and

the decimal expansions of its real and imaginary parts if α is not real. Finally, given dec-

imal expansions for α, we can effectively produce the corresponding decimal expansion

for any element of the field presented by its coordinates with respect to the power basis

of α.

Assume now that OK has a Diophantine model of Z. This means that for some

k ∈ N, there exists an injective and computable function φ : Z ↔ D ⊂ (OK)k under the

presentation described above, such that D is a Diophantine subset of (OK)k and φ-image

of every Diophantine subset of Z is Diophantine over (OK)k. Let P(x1, . . . , xk, t1, . . . , tm)
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be a Diophantine definition of D over (OK)k. Let V = {(x1, . . . , xk, t1, . . . , tm) ∈ (Ok
K) |

P(x1, . . . , xk, t1, . . . , tm) = 0} and consider the map

f : V
(
OK

) −→ (
OK

)k
(4.1)

implemented by projection on the first k coordinates. Note that f(V) = D. By assumption

and by Proposition 2.3, D̄ will have finitely many connected components. Since D has

infinitely many points, for at least one connected component C of D̄, C ∩ D must have

more than one point, and projection of C onto one of the coordinates if K is real, or on the

imaginary or real part of one of the coordinates, if K is not real, will contain an interval

whose endpoints are rational numbers. Let a be the left endpoint of this interval and let

l be its length. Let dn = s ◦ φ(n), where s is either projection on the coordinate described

above, or the real part or the imaginary part of the projection, as necessary, and let

Z̃ =

{
n ∈ Z | a +

l

2j + 1
≤ dn ≤ a +

l

2j
, j ∈ Z+

}
. (4.2)

Since φ is computable and we can compute effectively decimal expansions for

real and (if necessary) imaginary parts of all the elements of OK, Z̃ is recursively enumer-

able and therefore Z̃ is a Diophantine subset of Z by the result of Matijasevič, Robinson,

Davis, and Putnam. Further, s(D)∩ [a, a+ l] is dense in [a, a+ l]. Indeed, [a, a+ l] ⊆ s(C) ⊂
s(D̄). Since D is dense in D̄ and projection maps dense subsets into dense subsets, our

claim is true. Thus, any interval [a + l/(2j + 1), a + l/2j] will have infinitely many points

from s(D) and therefore elements dn, n ∈ Z̃ by definition of Z̃. Let D̃ = {φ(n) | n ∈ Z̃}.

Then D̃ has a Diophantine definition over (OK)k as the φ-image of a Diophantine subset

of Z. Let P̃(x1, . . . , xk, t1, . . . , tm) be a Diophantine definition of D̃ = φ(Z̃), and let Ṽ be the

algebraic set defined by P̃(x1, . . . , xk, t1, . . . , tm) = 0. Then s ◦ f, the projection from Ṽ on

the first k coordinates combined with projection onto a real or imaginary part of a coordi-

nate chosen as above will produce a projection of Ṽ onto set whose closure has infinitely

many components. Thus, Ṽ must have infinitely many components giving an affirmative

answer to Question 4.2 in contradiction of our assumptions for this proposition. �
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